Abstract

We consider a control system described by an evolution equation with control constraint which is a multivalued mapping of a phase variable with closed nonconvex values. One of the evolution operators of the system is the subdifferential of a time-dependent proper, convex, and lower semicontinuous function. The other operator, acting on the derivative of the required functions, is the subdifferential of a convex continuous function. We also consider systems with the following control constraints: multivalued mappings whose values are the closed convex hulls of the values of the original constraint and multivalued mapping whose values are the extreme points of the convexified constraint that belong to the original one. We study topological properties of the sets of admissible “trajectory-control” pairs of the system with various control constraints and clarify the relations between them. An example of a parabolic system with hysteresis and diffusion phenomena is considered in detail. Bibliography: 19 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.