Abstract
In this paper we study the existence of solutions u ∈ ${{W}^{1,p}_{0}}$ (Ω) with △ p u ∈ L 2(Ω) for the Dirichlet problem 1 $$ \left\{ \begin{array} [c]{l}-\triangle_{p}u\left( x\right) \in-\partial{\Phi}\left( u\left( x\right) \right) +G\left( x,u\left( x\right) \right) ,x\in{\Omega},\\ u\mid_{\partial{\Omega}}=0, \end{array} \right. $$ where Ω ⊆ R N is a bounded open set with boundary ∂Ω, △ p stands for the p−Laplace differential operator, ∂Φ denotes the subdifferential (in the sense of convex analysis) of a proper convex and lower semicontinuous function Φ and G : Ω × R → 2R is a multivalued map. We prove two existence results: the first one deals with the case where the multivalued map u ↦ G(x, u) is upper semicontinuous with closed convex values and the second one deals with the case when u ↦ G(x, u) is lower semicontinuous with closed (not necessarily convex) values.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.