Abstract

The Bragg reflection waveguide (BRW), or one-dimensional photonic crystal waveguide, has recently been proposed for a wide spectrum of applications ranging from particle acceleration to nonlinear frequency conversion. Here, we conduct a thorough analytical investigation of the quarter-wave BRW, in which the layers of the resonant cladding have a thickness corresponding to one quarter of the transverse wavelength of a desired guided mode. An analytical solution to the mode dispersion equation is derived, and it is shown that the quarter-wave BRW is polarization degenerate, although the TE and TM mode profiles differ significantly as the external Brewster's angle condition in the cladding is approached. Analytical expressions for waveguide properties such as the modal normalization constants, propagation loss, and overlap factors between the mode and each waveguide layer are derived, as are dispersion and tuning curves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.