Abstract

The interaction of rabbit skeletal muscle phosphofructokinase (PFK) with actin is characterized in terms of the binding of PFK to actin in the presence and absence of tropomyosin and troponin, the effect of PFK on actin polymerization, and the involvement of adenylates in the binding of PFK to actin. The thin filament proteins, tropomyosin and troponin, are associated with skeletal muscle actin and reduce the binding of PFK to actin, thus influencing the probable distribution of PFK in skeletal muscle. The binding of PFK to actin is inhibited by ATP and ADP but not by fructose 6-phosphate or fructose 2,6-bisphosphate. This specific inhibition, plus evidence from fluorescence quenching and photoaffinity labeling, suggests that actin binds at the adenosine activation sites of PFK. Light scattering measurements used to monitor actin polymerization indicate that PFK dramatically increases the level of light scattering produced by the polymerization of actin, indicative of a superaggregate of PFK and actin. PFK inhibits the polymerization of actin when polymerization is induced by low concentrations of added salts. Although PFK binds to actin with high affinity, it seems to have little effect on the high shear viscosity of actin filaments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call