Abstract
In this paper we investigate the innermost stable circular orbit (ISCO) of a spinning test particle moving in the rotating Maxwell-dilaton black hole spacetime. By using the Mathisson-Papapetrou-Dixon equations along with the Tulczyjew spin-supplementary condition, we find the equations of motion in the equatorial plane and, from the radial equation, it is obtained the effective potential for the description of the particle's motion. The obtained trajectories show that the ISCO radii for spinning particles moving in rotating charged backgrounds are always smaller than those obtained in the corresponding Kerr-Newman spacetimes. The increasing in the particle's spin produces a decrease in the ISCO radius in all the studied cases, with a maximum value for the spin and a corresponding minimum ISCO radius, obtained by imposing a condition that guarantees the timelike nature of the particle's worldline.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.