Abstract

The circular orbits of a spinning test particle moving around a charged Hayward black hole is investigated by using the Mathisson–Papapetrou–Dixon equations together with the Tulczyjew spin-supplementary condition. By writing the equations of motion, the effective potential for the description of the test particle is obtained to study the properties of the Innermost Stable Circular Orbit (ISCO). The results show that the ISCO radii for spinning particles moving in the charged Hayward background differ from those obtained in the corresponding Schwarzschild or Reissner–Nordstrom spacetimes, depending on the values of the electric charge and the length-scale parameter of the metric. When the spin of the particle and its orbital angular momentum are aligned, an increase in the spin produces a decrease in the ISCO radius, while in the case in which the spin of the particle and its orbital angular momentum are anti-aligned, an increase in the spin results in an increase of the radius of the ISCO.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call