Abstract

The equation for the electron Green's function of the fermionic Hubbard model, derived using the strong coupling diagram technique, is solved self-consistently for the near-neighbor form of the kinetic energy and for half-filling. In this case the Mott transition occurs at the Hubbard repulsion Uc ≈ 6.96t, where t is the hopping constant. The calculated spectral functions, density of states (DOS) and momentum distribution are compared with results of Monte Carlo simulations. A satisfactory agreement was found for U > Uc and for temperatures, at which magnetic ordering and spin correlations are suppressed. For U < Uc and lower temperatures the theory describes qualitatively correctly the positions and widths of spectral continua, variations of spectral shapes and occupation numbers with changing wave vector and repulsion. The locations of spectral maxima turn out to be close to the positions of δ-function peaks in the Hubbard-I approximation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call