Abstract

The strong coupling diagram technique is used for investigating states near the metal-insulator transition in the half-filled two-dimensional repulsive Hubbard model. The nonlocal third-order term is included in the irreducible part along with local terms of lower orders. Derived equations for the electron Green's function are solved by iteration for moderate Hubbard repulsions and temperatures. Starting iteration from Green's functions of the Hubbard-I approximation with various distances of poles from the real frequency axis continua of different metallic and insulating solutions are obtained. The insulating solutions vary in the width of the Mott gap, while the metallic solutions differ in the shape of the spectral function in the vicinity of the Fermi level. Besides, different scenarios of the metal-insulator transition -- with a sudden onset of a band of mobile states near the Fermi level and with gradual closure of the Mott gap -- are observed with a change in temperature. In spite of these dissimilarities, all solutions have a common curve separating metallic and insulating states in the phase diagram. Near this curve metallic and insulating solutions coexist. For moderate Hubbard repulsions metallic solutions are not Fermi liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.