Abstract
APS reductase from Pseudomonas aeruginosa has been shown to contain a [4Fe-4S] cluster. Thiol determinations and site-directed mutagenesis studies indicate that the single [4Fe-4S] cluster contains only three cysteine ligands, instead of the more typical arrangement in which clusters are bound to the protein by four cysteines. Resonance Raman studies in the Fe-S stretching region are also consistent with the presence of a redox-inert [4Fe-4S](2+) cluster with three cysteinate ligands and indicate that the fourth ligand is likely to be an oxygen-containing species. This conclusion is supported by resonance Raman and electron paramagnetic resonance (EPR) evidence for near stoichiometric conversion of the cluster to a [3Fe-4S](+) form by treatment with a 3-fold excess of ferricyanide. Site-directed mutagenesis experiments have identified Cys139, Cys228, and Cys231 as ligands to the cluster. The remaining two cysteines present in the enzyme, Cys140 and Cys256, form a redox-active disulfide/dithiol couple (E(m) = -300 mV at pH 7.0) that appears to play a role in the catalytic mechanism of the enzyme.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have