Abstract
A high-stretch positive temperature coefficient (PTC) surface heating textile (PTC-SHT) was fabricated using a composite of PTC powder and multiwall carbon nanotubes (MWCNTs). The PTC-SHT (heating area = 100 × 100 mm2) was produced by screen-printing the PTC-MWCNT composite paste onto a high-stretch textile with embroidered electrodes. Overall, the temperature increased to 56.1 °C with a power consumption of 5 W over 7 min. Subsequently, the surface temperature of the PTC-SHT remained constant despite the continued decrease in power consumption. This indicated that heating was accompanied by an increase in resistance of the PTC-SHT, which is typical of this process—i.e., heating to a constant temperature under a constant voltage over an extended period of time. In addition, 4.63 W power was required to heat the PTC-SHT surface from an external temperature of 5 to 45 °C in 10 min, after which stable low-temperature heat generation behavior was observed at a constant temperature of 50 °C, which was maintained over 40 min. In contrast, negative temperature coefficient (NTC) behavior has been observed in an NTC-SHT consisting of only MWCNTs, where a slow heating rate in the initial stage of power application and a continuous increase in surface temperature and power consumption were noted. The PTC-SHT consumed less power for heat generation than the NTC-SHT and exhibited rapid heating behavior in the initial stage of power application. The heat generation characteristics of the PTC-SHT were maintained at 95% after 100,000 cycles of 20% stretch–contraction testing, and the heating temperature remained uniformly distributed within ± 2 °C across the entire heating element. These findings demonstrated that an SHT with PTC characteristics is highly suitable for functional warm clothing applications that require low power consumption, rapid heating, stable warmth, and high durability.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.