Abstract

Multiwall carbon nanotubes (MWCNTs) filled poly (ethylene-co-butyl acrylate)/nylon6 (EBA/PA6) blends were prepared by melt-mixing method. MWCNTs were localized in PA6 phase and the percolation threshold was 6 wt%. A weak PTC (positive temperature coefficient) effect was observed. The method that EBA-g-MAH was first reacted with MWCNTs, and then blended with EBA/PA6 was employed to prepare EBA/PA6/EBA-g-MAH/MWCNTs composites. TEM results showed that MWCNTs were localized both at the interface and in PA6 phase, resulting in the sharp decrease of the percolation threshold. Influence of morphology on the PTC effect of EBA/PA6/EBA-g-MAH/MWCNTs composites was studied. In composites with dispersed PA6 phase, the conductive pathways were fabricated by the contact of dispersed PA6 phase and MWCNTs in PA6 phase. The melt of polyethylene segment crystals in EBA and PA6 phase interrupted the contact of dispersed phases and conductive network formed by MWCNTs in PA6 phase, resulting in the double PTC effect. For composites with dispersed EBA phase, although the conductive pathways were similar with the composites with dispersed PA6 phase, the single PTC effect was observed. And the PTC effect was attributed to the melt of PA6 phase. The conductive pathways of composites with co-continuous morphology were fabricated by MWCNTs at the interface and in continuous PA6 phase. Two strong and a weak PTC effect were observed. PTC effects appeared at the melting temperature of PA6 crystals, polyethylene segment crystals and viscous flow temperature of butyl acrylate units in EBA.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call