Abstract

Cross-periodograms can be used to study a multivariate spatial process observed on a lattice. For spatial data, it is often appropriate to study asymptotic properties of statistical procedures under fixed-domain asymptotics in which the number of observations increases in a fixed region while shrinking distances between neighboring observations. Using fixed-domain asymptotics, we prove relative asymptotic unbiasedness and relative consistency of a smoothed cross-periodogram after appropriate filtering of the data. In addition, we show that smoothed cross-periodograms are asymptotically normal when the process is stationary multivariate Gaussian with appropriate assumptions on high-frequency behavior of the spectral density.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.