Abstract

ABSTRACTA new approach to achieving a large-area silicon-on-insulator technology without pre-patterning is described. (100) Si films are first grown epitaxially on (100) yttria-stabilized cubic zirconia (YSZ) substrates by the pyrolysis of SiH4. The Si side of the <Si>/<YSZ>interface is then oxidized in pyrogenic steam (at 925 °C) or dry oxygen (at 1100°C) to form the structure <Si>/amorphous SiO2/<YSZ>. The oxidation occurs by the rapid diffusion of oxidants through the 0.42 mm thick YSZ substrate; e.g., a 0.3 μm SiO2layer is obtained in 6 h in steam. The samples are analyzed by Rutherford backscattering and channeling spectrometry, X-ray diffraction, infra-red reflectance, Auger electron spectroscopy and sheet resistance measurements. In addition to forming the preferred Si/SiO2interface, the back-side oxidation eliminates the most defective part of the Si film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.