Abstract
ABSTRACTThe rapid increase in waste electrical and electronic equipment (WEEE) poses a significant environmental challenge. To address this issue, initiatives promoting circular economy principles have emerged, such as utilizing recycled acrylonitrile butadiene styrene (ABSr) and high‐impact polystyrene (HIPSr) from WEEE. This study evaluated the properties of virgin ABS (ABSv)/ABSr and ABSv/HIPSr blends, with ABSr and HIPSr obtained from TV housing WEEE. The blend samples were prepared using filament extrusion, followed by either compression molding or 3D printing. ABSv exhibited a stronger shear‐thinning behavior than ABSr and HIPSr at low shear rates, indicating a higher content of butadiene rubber. The viscosities of the blends increased with higher ABSv content at low shear rates and approximated those of ABSv, ABSr, and HIPSr at high shear rates. Overall, compression‐molded blends demonstrated superior viscosities at low shear rates and higher impact strength compared to their 3D–printed counterparts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have