Abstract
Poly(lactic acid)/organo-montmorillonite (PLA/OMMT) nanocomposite films were prepared through solution intercalation using dichloromethane as solvent. X-ray diffraction indicated that organo-montmorillonite (OMMT) was well intercalated and the interlayer spacing d increased by 0.94–1.47 nm. Transmission Electron Microscopy showed that a majority of OMMT was fully exfoliated and uniformly dispersed in the PLA matrix at low filler loading, whereas more intercalated tactoids and aggregates of OMMT existed at high loading. The crystallinity of PLA was hardly changed with the addition of OMMT. Additionally, CO2 permeability and water vapor transmission rate of the composite films were reduced with increasing content of OMMT. At 5 wt% OMMT loading, CO2 permeability and water vapor transmission rate were reduced by 75.8% and 23.9%, respectively. The tensile strength (TS) and Young's modulus of the PLA/OMMT nanocomposites were first enhanced, and then decreased with increasing content of OMMT. Compared with pure PLA, a 83.8% increase in the Young's modulus and a 76.0% improvement in TS were obtained with the addition of 3 wt% OMMT.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have