Abstract

The choice of base materials and the use of their functional properties in the development of the structure and elucidation of the mechanism of resistive switching has been analyzed. Mesoscopic heterostructures based on epitaxial oriented 〈001〉 films of high-temperature superconductor YBa2Cu3O7 – δ and doped manganite La1 – xSrxMnO3 – δ, were obtained, and the properties of percolation channels of structures based on these compounds were studied. The effects of “self-adapting electroforming” in microcontact heterostructures based on epitaxial films of manganite are observed. Numerical calculations using the critical electric field model have shown that “self-electroforming” occurs in strong electric fields and a gap structure is formed in the contact zone. This structure provides reproducibility of resistive switching.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call