Abstract
In this paper we report results from a neutron irradiation campaign of Ultra-Fast Silicon Detectors (UFSD) with fluences of 1e14, 3e14, 6e14, 1e15, 3e15, 6e15 n/cm2. The UFSD used in this study are circular 50 micro-meter thick Low-Gain Avalanche Detectors (LGAD), with a 1.0 mm diameter active area. They have been produced by Hamamatsu Photonics (HPK), Japan, with pre-radiation internal gain in the range 10-100 depending on the bias voltage. The sensors were tested pre-irradiation and post-irradiation with minimum ionizing particle (MIPs) from a 90Sr based \b{eta}-source. The leakage current, internal gain and the timing resolution were measured as a function of bias voltage at -20C and -30C. The timing resolution was extracted from the time difference with a second calibrated UFSD in coincidence, using the constant fraction method for both. The dependence of the gain upon the irradiation fluence is consistent with the concept of acceptor removal and the gain decreases from about 80 pre-irradiation to 7 after a fluence of 6e15 n/cm2. Consequently, the timing resolution was found to deteriorate from 20 ps to 50 ps. The results indicate that the most accurate time resolution is obtained at a value of the constant fraction discriminator (CFD) threshold used to determine the time of arrival varying with fluence, from 10% pre-radiation to 60% at the highest fluence. Key changes to the pulse shape induced by irradiation, i.e. (i) a reduce sensitivity of the pulse shape on the initial non-uniform charge deposition, (ii) the shortening of the rise time and (iii) the reduced pulse height, were compared with the WF2 simulation program and found to be in agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.