Abstract

We describe here the use of high-temperature oxidation and reduction to produce highly crystalline nanoparticles of Ni and NiO. Starting with an amorphous Ni powder, we demonstrate that oxidation at $900\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$ produces faceted NiO nanocrystals with sizes ranging from 20 to 60 nm. High-resolution transmission electron microscopy measurements indicate near-perfect atomic order, truncated by (200) surfaces. Magnetization measurements reveal that the N\'eel temperature of these NiO nanoparticles is 480 K, substantially reduced by finite-size effects from the bulk value of 523 K. The magnetization of these faceted NiO nanoparticles does not saturate in fields as large as 14 T while a loop offset is observed which increases from 1000 Oe at 300 K to its maximum value of 3500 Oe at 50 K. We have used high-temperature reduction to transform the faceted NiO nanoparticles into highly ordered Ni nanoparticles, with a Curie temperature of 720 K and blocking temperatures in excess of 350 K. Subsequent efforts to reoxidize these Ni nanoparticles into the core-shell morphology found that the Ni nanoparticles are much more resistant to oxidation than the original Ni powder, perhaps due to the relative crystalline perfection of the former. At $800\text{ }\ifmmode^\circ\else\textdegree\fi{}\text{C}$, an unusual surface roughening and subsequent instability was observed, where 50-nm-diameter NiO rods grow from the Ni surfaces. We have demonstrated that high-temperature oxidation and reduction in Ni and NiO are both reversible to some extent and are highly effective for creating the highly crystalline nanomaterials required for applications such as exchange-bias devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.