Abstract

Shallow neutral donors (D$^{0}$) in ZnO have emerged as a promising candidate for solid-state spin qubits. Here, we report on the formation of D$^{0}$ in ZnO via implantation of In and subsequent annealing. The implanted In donors exhibit optical and spin properties on par with $\textit{in situ}$ doped donors. The inhomogeneous linewidth of the donor-bound exciton transition is less than 10 GHz, comparable to the optical linewidth of $\textit{in situ}$ In. Longitudinal spin relaxation times ($T_1$) exceed reported values for $\textit{in situ}$ Ga donors, indicating that residual In implantation damage does not degrade $T_1$. Two laser Raman spectroscopy on the donor spin reveals the hyperfine interaction of the donor electron with the spin-9/2 In nuclei. This work is an important step toward the deterministic formation of In donor qubits in ZnO with optical access to a long-lived nuclear spin memory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call