Abstract

ABSTRACTDelta doping (paused growth doping) was investigated as an alternative to uniformly distributing the dopant in the nitride semiconductor layer. In this work, delta doped layers were produced in MOVPE-grown AlGaN and GaN layers at a susceptor temperature of 1220°C by turning off the group III precursors (TMG and TMA) and introducing into the reactor a silicon precursor Si2H6 (disilane) for a fixed period (pause time) before growth was restarted. The compositional and electrical properties as a function of aluminum content and dopant flux were investigated for nitride layers on 2 inch c-plane sapphire substrates. Secondary ion mass spectroscopy (SIMS) measurements revealed a sharp silicon peak with a FWHM of 5.7 ± 0.6 nm for an Al0.25Ga0.75N sample and 10.0 ± 0.6 nm for a GaN sample with sheet charges of 7.9×1012 cm−2 and 9.9×1012 cm−2,respectively. Room temperature Hall mobility as high as 265 cm2 V−1s−1 for a sheet charge 7.9×1012 cm−2 was demonstrated for delta doped Al0.25Ga0.75N layers, but the mobility enhancement saturated and then decreased with increasing sheet charge. Room temperature sheet charge increased with increasing dopant flux for delta-doped AlGaN and GaN layers. Sheet charge density as high as 2.2×1013 cm−2 and 1.3×1013 cm−2 was measured at room temperature for Al0.25Ga0.75N and GaN delta doped layers, respectively. Under identical doping conditions, the Hall sheet charge of the delta doped Al0.25Ga0.75N layer was approximately half as large as GaN layers. The impurity and electrical characteristics of the delta doped layers are further discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.