Abstract

Heterojunction field-effect transistors based on the β-(AlxGa1−x)2O3/Ga2O3 heterostructure grown by ozone-assisted molecular beam epitaxy were demonstrated for the first time. Al composition ratios in the 14%–23% range were validated using x-ray diffraction on the three samples grown for this study. Electrochemical capacitance-voltage (ECV) measurements showed the presence of a charge sheet in the delta-doped (AlxGa1−x)2O3 barrier layer. Secondary ion mass spectroscopy and ECV measurements also revealed an unintentional Si peak at the (AlxGa1−x)2O3/Ga2O3 interface. Direct current (IDS-VGS) and transconductance (Gm-VGS) measurements demonstrated depletion-mode transistor operation as well as the presence of a parallel conduction channel. A one-dimensional Poisson model suggested that dopant redistribution in the delta-doped region could cause a secondary channel to form in the barrier in addition to the primary channel near the (AlxGa1−x)2O3/Ga2O3 interface under certain conditions met in these samples. Fabricated devices on sample A did not exhibit breakdown up to the measurement limit of 1100 V, with stability after ten cycles. A maximum output drain current density of 22 mA/mm was measured on sample B. Room temperature Hall measurements yielded a sheet carrier density of 1.12 × 1013 cm−2 with corresponding Hall mobility of 95 cm2/V s in sample C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.