Abstract

ABSTRACTMany reported CuIn1-xGaxSe2 (CIGS) thin films for high-efficiency solar cells have been prepared via a two-stage process that consists of a high-vacuum film deposition step followed by selenization with excess H2Se gas or Se vapor. Removing toxic gas and high-vacuum requirements from this process would greatly simplify it and make it less hazardous. We report the formation of CuIn1-xGaxSe2 (x = 0, 0.25, 0.50, 0.75, 1.0) thin films achieved by rapid thermal annealing of spray-deposited CuIn1-xGaxS2 and Se in the absence of an additional selenium source. To prepare the Se layer, commercial Se powder was dissolved by refluxing in ethylenediamine/2,2-dimethylimidizolidine. After cooling to room temperature, this mixture was combined with 2-propanol and the resulting colloidal Se suspension was sprayed by airbrush onto a heated glass substrate. The resulting film was coated with nanocrystalline CuIn1-xGaxS2 via spray deposition of a toluene-based “nanoink” suspension. The two-layer sample was annealed at 550 oC in an argon atmosphere for 60 minutes to form the final CIGS product. Scanning electron microscopy images reveal that film grains are 200-300 nm in diameter and comparable to sizes of the reactant CuIn1-xGaxS2 nanoparticles. XRD patterns are consistent with the chalcopyrite unit cell and calculated lattice parameters and A1 phonon frequencies change nearly linearly between those for CuInSe2 and CuGaSe2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.