Abstract

Reactions of laser ablated cerium atoms with hydrogen peroxide or hydrogen and oxygen mixtures diluted in argon and condensed at 4 K produced the Ce(OH)3 and Ce(OH)2 molecules and Ce(OH)2(+) cation as major products. Additional minor products were identified as the Ce(OH)4, HCeO, and OCeOH molecules. These new species were identified from their matrix infrared spectra with D2O2, D2, and (18)O2 isotopic substitution and correlating observed frequencies with values calculated by density functional theory. We find that the amounts of Ce(OH)3 and of the Ce(OH)2(+) cation increase on UV (λ > 220 nm) photolysis, while Ce(OH)2, Ce(OH)4, and HCeO are photosensitive. The observed major species for Ce are in the +III or +II oxidation state, and the minor product, Ce(OH)4, is in the +IV oxidation state. The calculations for the vibrational frequencies with the B3LYP functional agree well with the experiment. The NBO analysis shows significant backbonding to the metal 4f and 5d orbitals for the closed shell species. Most open shell species have the excess spin in the 4f with paired spin in the 5d due to backbonding. The heats of formation of the observed species were derived from the available data from experiment and the calculated reaction energies. The major products in this study are different from similar reactions for Th where the tetrahydroxide was the major species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.