Abstract

The micellar properties of aqueous binary mixed solutions for two systems consisting of sodium cholate (NaC)‐octaoxyethylene glycol mono n‐decyl ether (C10E8) and sodium glycocholate (NaGC)‐C10E8 have been studied on the basis of surface tensions, polarity of the micelle interior and the mean aggregation number. Application of two theoretical treatments, based on regular solution and excess thermodynamic quantities for critical micellar concentration (CMC) data from surface tension curves of two mixed systems showed that the mole fraction of each bile salt in the mixed micelles near the CMC is lower than that of the corresponding prepared mole fraction in the mixed solution. The polarity of the interior suggested that the hydrophobicity of intramicelles increased with the increase of the mole fraction of bile salt in the mixed solution and that the mixed micelles become dramatically more hydrophobic at a mole fraction of 0.68 for NaGC−C10E8 system and 0.75 for NaC−C10E8 system, respectively. This implies that the micelles become richer in the bile salt molecules and the tendency appears strongly for NaGC−C10E8 system due to the strong cohesion between the conjugated glycines in the NaGC molecules. The decrease of aggregation number with the increase of the mole fraction of bile salts shows that the micelles approach those of the single system of each bile salt. This supports the previously mentioned facts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call