Abstract

We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties of this soliton gas are determined numerically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.