Abstract

An optical fiber ring resonator (OFRR) is the key rotation-sensing element in the resonator fiber optic gyro (R-FOG). In comparing between different OFRR types, a simulation model that can apply to all cases is set up. Both the polarization crosstalk and polarization-dependent loss in the coupler are fully investigated for the first time to our knowledge. Three different splicing schemes, including a single 0°, a single 90°, and twin 90° polarization axis rotated spices, are compared. Two general configurations of the OFRR are considered. One is a reflector OFRR, the other is a transmitter OFRR. This leads to six different OFRR types. The output stability of the R-FOG with six OFRR types is fully investigated theoretically and experimentally. Additional Kerr noise due to the polarization fluctuation is discovered. The OFRR with twin 90° polarization axis rotated splices is of lower additional Kerr noise and hence has better temperature stability. As the coupler is polarization dependent, we notice that in a reflector OFRR, the straight-through component of the output lightwave, which can be isolated by a transmitter configuration, would produce large polarization fluctuation-induced noise. The experimental results show that the bias stability of the transmitter OFRR is 8 times improved over that of the reflector OFRR, which is in accord with the theoretical analysis. By the analysis and experiments above, it is reasonable to make a conclusion that an R-FOG based on a transmitter OFRR with twin 90° polarization axis rotated splices is of better temperature stability and smaller additional Kerr effect noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.