Abstract

Oil palm empty fruit bunch (OPEFB) is one of the lignocellulosic materials which very well known as an abundant waste at oil mills and need to be utilized. The nanocrystalline cellulose (NCC) was extracted from OPEFB fiber through several of chemical treatment and hydrolyzed with sulphuric acid (H2SO4). NCC acts as support to modify with aminosilane, N-(2-aminoethyl)-3-aminopropylmethyldimethoxy silane (AEAPDMS) which has possibility for carbon dioxide (CO2) capture. The objective of this study was to evaluate the effect of NCC properties after modified with AEAPDMS. The raw OPEFB fiber, cellulose, NCC and modified NCC were characterized by attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), x-ray diffraction (XRD) but the morphology and the size of NCC was studied by transmission electron microscopy (TEM). The NCC treated with AEAPDMS was proved by FTIR with the emerging of several new peaks especially for NH2 bending and wagging around 1600 cm-1 and 798 cm-1, respectively. While, the XRD result showed the CrI of modified NCC decreased to 64 % from 76 % after the treatment due to the interaction of silanization occurred during the treatment since AEAPDMS has amorphous region. The NCC used in this study was classed as nanomaterial within nanosize and rod-like morphology observed by TEM analysis. Thus, these results give a good possibility for the AEAPDMS modified NCC to capture CO2 via covalent bonding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call