Abstract

The high chemical activity, low thermal conductivity, and high strength of titanium alloys lead to severe tool wear during cutting. The coating applied to the tool surface insulates the effect of heat and chemical reactions. TiAlSiN coating and AlCrN coating are two representative coatings with excellent properties in TiN-based and CrN-based applications, respectively. Three types of nanocoatings—TiAlSiN monolayer, AlCrN monolayer, and TiAlSiN/AlCrN multilayer—were prepared, and the microstructure, mechanical properties, oxidation resistance, diffusion properties with titanium alloy, and cutting performance of the coatings were investigated utilizing SEM, TEM, XRD, TGA, GD-OES, nanoindentation, and scratching instruments. The hardness, elastic modulus, and adhesion strength of TiAlSiN/AlCrN multilayer coatings are between TiAlSiN monolayer and AlCrN monolayer coatings, which meet the “law of mixtures”. Adhesion strength is the primary condition for cutting applications and should have a minimum threshold value. Ti and N elements are the most significant in the diffusion between coatings and titanium alloys. The nitride coating containing Cr aggravates the loss of N in contact with the titanium alloy. In addition, multilayer structural coatings can lead to more severe diffusion than monolayer coatings due to their inherent interlayer defects. Although diffusion between titanium alloys and coated tools is more severe than with other workpiece materials, the main factor affecting tool cutting life is still the H3/E*2 value determined by the hardness and modulus of elasticity together.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call