Abstract

Backpropagation neural network has been applied successfully to solving uncertain problems in many fields. However, unsolved drawbacks still exist such as the problems of local minimum, slow convergence speed, and the determination of initial weights and the number of processing elements. In this paper, we introduce a single-layer orthogonal neural network (ONN) that is developed based on orthogonal functions. Since the processing elements are orthogonal to one another and there is no local minimum of the error function, the orthogonal neural network is able to avoid the above problems. Among the five existing orthogonal functions, Legendre polynomials and Chebyshev polynomials of the first kind have the properties of recursion and completeness. They are the most suitable to generate the neural network. Some typical examples are given to show their performance in function approximation. The results show that ONN has excellent convergence performance. Moreover, ONN is capable of approximating the mathematic model of backpropagation neural network. Therefore, it should be able to be applied to various applications that backpropagation neural network is suitable to solve. © 2001 John Wiley & Sons, Inc.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.