Abstract
This paper presents a new single-layer neural network which is based on orthogonal functions. This neural network is developed to avoid the problems of traditional feedforward neural networks such as the determination of initial weights and the numbers of layers and processing elements. The desired output accuracy determines the required number of processing elements. Because weights are unique, the training of the neural network converges rapidly. An experiment in approximating typical continuous and discrete functions is given. The results show that the neural network has excellent performance in convergence time and approximation error.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: IEEE Transactions on Systems, Man and Cybernetics, Part B (Cybernetics)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.