Abstract

In this paper, the mechanical properties and microstructure of kaolin geopolymer ceramics with addition of Ultra High Molecular Weight Polyethylene were studied. Inorganic polymers based on alumina and silica polysialate units were synthesized at room temperature from kaolin and sodium silicate in a highly alkaline medium, followed by curing and drying at 80 °C. Alkaline activator was formed by mixing the 12 M NaOH solution with sodium silicate at a ratio of 0.24. Addition of Ultra High Molecular Weight Polyethylene to the kaolin geopolymer are fabricated with Ultra High Molecular Weight Polyethylene content of 2, 4, 6 and 8 (wt. %) by using powder metallurgy method. The samples were heated at 1200 °C and the strength and morphological were tested. It was found that the flexural strength for the kaolin geopolymer ceramics with addition of UHMWPE were improved and generally increased with the increasing of UHMWPE loading. The result revealed that the optimum flexural strength was obtained at UHMWPE loading of 4 wt. % (92.1 MPa) and the flexural strength started to decrease. Microstructural analysis showed the samples appeared to have more number of pores and connected of pores increased with the increasing of UHMWPE content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call