Abstract

For the mechanical characterization of structural materials non-destructive tests combined with computer simulations and inverse analyses are more and more frequently and advantageously employed in various engineering fields. The contribution to such development presented in this paper can be outlined as follows. With reference to isotropic elastic–plastic material models, indentation test simulations are done preliminarily, once-for-all, by a conventional finite element forward operator. Results of these simulations are employed in a procedure which is centered on Proper Orthogonal Decomposition and Radial Basis Functions approximation and is used for fast interpolations which replace further finite element analyses in the parameter identification process. Comparative computational exercises are presented in order to point out the consequent significant reduction of computing times in test simulations and, hence, in the minimization of the discrepancy function by the Trust Region Algorithm, namely by a traditional first-order mathematical programming method. Such a parameter identification procedure may be carried out routinely and economically on small computers for in situ structural diagnoses. Both the force–penetration relationship (provided by an instrumented indenter) and the average imprint profile (achievable by laser profilometer) are considered as sources of measurable response quantities or experimental data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.