Abstract

Finding the better solution of the inverse kinematics problem, with the minimum of the trajectory errors, is very difficult because there are many variable parameters and many redundant solutions. The presented paper show the assisted solving of the inverse kinematics with the goal to minimize the final end-effector trajectory errors, by optimizing the distance between the and-effector final position and the target. All obtained results were been verified by applying the proper forward kinematics virtual LabVIEW instrumentation. The paper tries to answer at the inverse kinematics problem for one known mathematical trajectory and identifying the cinematic errors after the establishing and applying the proper assisted solving method using the Cycle Coordinate Descent Method coupled to the proper Neural Network Sigmoid Bipolar Hyperbolic Tangent (CCDM-SBHTNN). We were shown one complete study case to obtain one circle space trajectory using one arm type robot fixed on the ceiling. The presented method is general and can be used in all other robots types and in all other conventional and unconventional space curves.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.