Abstract
Inverse kinematics model of the industrial robot is used in the control of the end-effecter trajectory. The solution of the inverse kinematics problem is very difficult to find, when the degree of freedom increase and in many cases this is impossible. In these cases is used the numerical approximation or other method with diffuse logic. The paper showed one new method for optimization of the inverse cinematic solution by applying the proper assisted Iterative Pseudo Inverse Jacobian Matrix Method coupled with proper Sigmoid Bipolar Hyperbolic Tangent Neural Network with Time Delay and Recurrent Links Method (IPIJMM-SBHTNN-TDRLM). In the paper was shown one case study to obtain one space circle curve by using one arm type robot and the proposed method. The errors of the space coordinates of the circle, after applying the proposed method, was less than 0.001. The study has contained the determining the internal coordinates corresponding to the external coordinates of the circle space curve, by solving the inverse kinematics with the proposed method and after that, by applying the forward kinematics to this coordinates, were obtained the external coordinates, what were compared with the theoretical one. The presented method is general and it can be used in all other robots types and for all other conventional and unconventional space curves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have