Abstract

The pyrolysis and oxidation of propene were studied experimentally in an atmospheric flow reactor. Species profiles were obtained in the intermediate to high temperature range (∼1200 K) for lean, stoichiometric, rich, and pyrolytic conditions. Laminar flame speeds of propene/air mixtures were also determined over an extensive range of equivalence ratios, at room temperature and atmospheric pressure, using the counterflow twin flame configuration. A detailed chemical kinetic model consisting of 469 reactions and 71 species was used to describe the high-temperature kinetics of propene, propyne, allene, and propane. It was shown that the kinetic model could accurately predict a wide range of combustion data for these fuels, including laminar premixed flame speeds, speciation in flow reactors, and ignition in shock tubes. Notable uncertainties in the reaction kinetics of these fuels are identified and discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.