Abstract
INTRODUCTION: Hypergolic propellants can be released in large amounts during space launch contingencies. Whether propellant-contaminated suit fabric poses a significant risk to rescue crews, due to off-gassing, has not been explored in detail. In this study, we addressed this issue experimentally, exposing space suit fabric to propellants (dinitrogen tetroxide [N₂O₄] and monomethyl hydrazine [MMH]).METHODS: The NASA Space Shuttle Program Advanced Crew Escape System II (ACES II) is similar to the NASA Orion Crew Survival System (OCSS) and was utilized here. Suit fabric was placed and sealed into permeation cells. Fabric exterior surface was exposed to constant concentrated hypergolics, simulating permeation and leakage. Fabric was rinsed, and permeation and off-gassing kinetics were measured. Experimental parameters were selected, simulating suited flight crewmembers during an evacuation transport without cabin air flow.RESULTS: The fabric allows for immediate permeation of liquid or vaporized MMH and N₂O₄. NO₂ off-gassing never exceeded the AEGL-1 8-h level (acute exposure guideline level). In contrast, MMH off-gassing levels culminated in peak levels, approaching AEGL-2 10-min levels, paralleling the drying process of the fabric layers. DISCUSSION: Our findings demonstrate that MMH off-gassing is promoted by the drying of suit material in a delayed fashion, resulting in MMH concentrations having the potential for adverse health effects for flight and rescue crews. This indicates that shorter decontamination times could be implemented, provided that suit material is either kept moist to prevent off-gassing or removed prior to medical evacuation. Additional studies using OCSS or commercial crew suits might be needed in the future.Schwertz H, Roth LA, Woodard D. Propellant off-gassing and implications for triage and rescue. Aerosp Med Hum Perform. 2020; 91(12):956961.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.