Abstract

We describe the temporal evolution of the electric field of few-cycle optical pulses with arbitrary, time-varying polarization states by means of the instantaneous polarization ellipse and phase, whose physical meanings for few-cycle pulses are clarified. A physically meaningful definition of carrier–envelope phase (CEP) for arbitrarily polarized pulses is introduced. This description is used to study the changes in the temporal evolution of the electric field of a few-cycle pulsed beam. Propagation is found to result in significant changes in the polarization state, phase, and CEP. Approximate analytical formulas for these effects are provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.