Abstract
Structural components with curved edges are common in many engineering designs. Fatigue cracks, corrosion and other types of defects and mechanical damage often initiate from (or are located close to) edges. Damage and defect detection in the presence of complex geometry represents a significant challenge for non-destructive testing (NDT). To address this challenge, this paper investigates the fundamental mode of the quasi-symmetric edge-guided wave (QES0) propagating along a curved edge, as well as its scattering characteristics in the presence of different types of edge defects. The finite element (FE) approach is used to investigate the propagation and mode shapes of the QES0. It was found that the wave attenuation dramatically increases when the radius-to-thickness ratio is less than 20. Moreover, the mode shapes are significantly affected by the waveguide curvature as well as the excitation frequency. Additionally, to evaluate the sensitivity of QES0 to edge defects, different sizes of edge defects were investigated with the FE model, which validated against experimental results. The validated FE model was further employed to quantify the dependence of the amplitude of scattered waves for different types of edge defects. These studies indicate that the amplitude of scattered wave is very sensitive to the presence of edge defects. The main outcome of this work is the demonstrated ability of the QES0 wave mode to propagate over long distances and a high sensitivity of this mode to different types of edge defects, which manifest its great potential for detecting and characterising damage near the curved edges of structural components.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have