Abstract
In this work we study travelling wave solutions to bistable reaction–diffusion equations on bi-infinite k-ary trees in the continuum regime where the diffusion parameter is large. Adapting the spectral convergence method developed by Bates and his coworkers, we find an asymptotic prediction for the speed of travelling front solutions. In addition, we prove that the associated profiles converge to the solutions of a suitable limiting reaction–diffusion PDE. Finally, for the standard cubic nonlinearity we provide explicit formulas to bound the thin region in parameter space where the propagation direction undergoes a reversal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.