Abstract

The propagation properties of partially coherent Hermite-Gaussian beams through non-Kolmogorov atmospheric turbulence are studied. The effects of non-Kolmogorov turbulence and beam nonparaxiality on the average intensity evolution and the beam-width spreading are stressed. It is found that the evolution of the average intensity distribution and the beam-width spreading depends on the generalized exponent factor, namely, on the non-Kolmogorov turbulence strength for the paraxial case. For the non-paraxial case the effect of the turbulence is negligible, while the beam-width spreading becomes very large. The analytical results are illustrated numerically and interpreted physically.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call