Abstract
Based on the extended Huygens–Fresnel principle, we derive an analytical expression for the beam width of polychromatic partially coherent Hermite-Gaussian array (PPCHGA) beams propagating through non-Kolmogorov turbulence and study in detail the effect of bandwidth, array parameters, and non-Kolmogorov turbulence on the beam-width spreading. We show that the beam width of PPCHGA beams increases with increase in the bandwidth, beam number, and relative distance of beam separation. The spreading of polychromatic array beams with increasing generalized exponent parameter is smaller than that of monochromatic array beams under the same conditions. The results are illustrated by numerical examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.