Abstract

The behavior of the twisted electomagnetic (EM) Gaussian Schell-model array beams in anisotropic random turbulence is investigated. An example illustrates that a twisted EM source can produce lattice-like patterns in degree of polarization with rotation or not, which depends on the setting of the initial twist phase. One also finds that the anisotropy of the medium leads to an anisotropic beam spreading, and we can effectively limit such turbulence-induced effects by optimizing the initial twist and source correlation widths. Moreover, after transmitting through the turbulence for sufficiently long distances, the intensity and coherence are mainly affected by turbulence statistics; however, for the case of polarization, the initial twist plays a dominant role in determining its distribution profile.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call