Abstract

AbstractTopographic Rossby waves (TRWs) are oscillations generated on sloping topography when water columns travel across isobaths under potential vorticity conservation. From our large-scale observations from 2016 to 2019, near-65-day TRWs were first observed in the deep basin of the South China Sea (SCS). The TRWs propagated westward with a larger wavelength (235 km) and phase speed (3.6 km day−1) in the north of the array and a smaller wavelength (80 km) and phase speed (1.2 km day−1) toward the southwest of the array. The ray-tracing model was used to identify the energy source and propagation features of the TRWs. The paths of the near-65-day TRWs mainly followed the isobaths with a slightly downslope propagation. The possible energy source of the TRWs was the variance of surface eddies southwest of Taiwan. The near-65-day energy propagated from the southwest of Taiwan to the northeast and southwest of the array over ~100–120 and ~105 days, respectively, corresponding to a group velocity of 4.2–5.0 and 10.5 km day−1, respectively. This suggests that TRWs play an important role in deep-ocean dynamics and deep current variation, and upper-ocean variance may adjust the intraseasonal variability in the deep SCS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call