Abstract

Energetics of the abyssal ocean account greatly for the redistribution and dissipation of global oceanic energy. In this study, we characterize the intraseasonal fluctuations in the deep South China Sea (SCS) and evaluate the relevant energy budget using observations and numerical simulations. The results indicate substantial geographical inhomogeneity in the intraseasonal energy reservoir. The high-energy zones are located in the northwest of the Luzon Strait, northern slopes, deep western boundary current region, and southwestern cyclonic gyre region, where the intraseasonal fluctuations account for about 70% of the deep energy variability. Vorticity and divergence patterns of the intraseasonal motions are suggestive of quasigeostrophic dynamics, which are mostly attributed to the hybrid topographic–planetary Rossby waves. The flow field exhibits a weak lateral shear and appears to have symmetric instability with negative vorticity skewness, particularly over the sloping topography. Energetics analysis demonstrates that the intraseasonal fluctuations in the abyssal SCS obtain energy primarily from the upper layer through pressure work, while secondarily from advective transport and cross-scale transfer due to instability of the deep circulation. To reach equilibrium, the energy gained is mostly damped by dissipations. As another reference in the marginal sea with intensive mixing, our study highlights the potential universality in how the intraseasonal energy is fueled and dissipated in the abyss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.