Abstract

A hard-edged elliptical aperture is described approximately by a tensor form, which can be expanded as a finite sum of complex Gaussian functions. An analytical propagation expression for a decentered elliptical Gaussian beam (DEGB) through an axially nonsymmetrical optical system with an elliptical aperture is derived by using vector integration. The approximate analytical results are compared with numerically integral ones, and it is shown that this method can significantly improve the efficiency of numerical calculation. Some numerical simulations are illustrated for the propagation properties of DEGBs through apertured and nonsymmetrical optical transforming systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.