Abstract

A theoretical investigation is conducted of high-order harmonic generation (HHG) in silicon thin films to elucidate the effect of light propagation in reflected and transmitted waves. The first-principles simulations are performed of the process in which an intense pulsed light irradiates silicon thin films up to $3\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{m}$ thickness. Our simulations are carried within the time-dependent density functional theory (TDDFT) with the account of coupled dynamics of the electromagnetic fields and the electronic motion. It was found that the intensity of transmission HHG gradually decreases with the thickness, while the reflection HHG becomes constant from a certain thickness. Detailed analyses show that transmission HHG has two origins: the HHG generated near the front edge and propagates to the back surface and the HHG generated near the back edge and emitted directly. The dominating mechanism of the transmission HHG is found to depend on the thickness of the thin film and the frequency of the HHG. At the film thickness of $1\phantom{\rule{0.28em}{0ex}}\ensuremath{\mu}\mathrm{m}$, the transmission HHG with the frequency below 20 eV is generated near the back edge, while that with the frequency above 20 eV is generated near the front edge and propagates from there to the back surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.