Abstract

The phenomena of interaction and propagation of cracks under the contribution of hydrogen were studied in (001) silicon substrate in which an array of scattered over-pressurized He-plates was previously introduced at a given depth. Their propagation under subcritical regime was activated through diffusional supply of H atoms introduced by implantation/annealing. Interactions between the tips of non coplanar cracks take place in a nanometric scale; they can be of plastic-type leading to the formation of extended defects or of elastic-type resulting in deviations of crack-tip propagation. While the planar interactions facilitate the propagation of cracks, those of non coplanar-type stop them. The observations were carried out by transmission electron microscopy and the results were discussed and modelled by using concepts of elasticity and fracture mechanics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call