Abstract

This chapter aims to introduce the concept of fracture mechanics and numerical approaches to solve interacting cracks problems in solid bodies which involves elastic crack interaction. The elastic crack interaction is a result of changes in stress field distribution as the applied force is given during remote loading. The main emphasis is to address the computational evaluation on mechanistic models based on crack tip displacement, stress fields and energy flows for multiple cracks. This chapter start with a brief discussion on fracture and failure that promoted by interacting cracks from industrial cases to bring the issues of how important the crack interaction behaviour is. The present fracture and failure mechanism is assumed to exhibit the brittle fracture. Thus, the concept of linear elastic fracture mechanics (LEFM) is discussed regarding the crack interaction model formulation. As the elastic crack interaction is concerned, the previous analytical and numerical solution of crack interaction are elaborated comprehensively corresponds to fitness-for-service (FFS) as published by ASME boiler and pressure vessel code (Section XI, Articles IWA-3330), JSME fitness-for-service code and BSI PD6493 and BS7910. A new computational fracture mechanics algorithm is developed by adopting stress singularity approach in finite element (FE) formulation. The result of developed approach is discussed based on the crack interaction limit (CIL) aspects and crack unification limit (CUL) in pertinent to the equality of two cracks to single crack rules in FFS. As a conclusion, the FE formulated approach was found to be at agreeable accuracy with analytical formulation and FFS at certain range of crack interval.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.