Abstract

The propagation of an optical soliton is studied in a fiber with randomly varying core diameter or random amplification along the fiber. The adiabatic dynamics of the soliton and radiative processes are investigated by a perturbation method based on the inverse scattering transform. The mean emitted power and the damping rate of the soliton are calculated. The interaction of solitons in random media is investigated by the Karpman–Solov’ev perturbation theory. Numerical simulations of the full nonlinear Schrodinger equation with multiplicative white- and colored-noise perturbations are performed for initial conditions corresponding to a single soliton and to two interacting solitons. The results obtained are in good agreement with the analytical estimates for white noise in the initial stage of the propagation. The numerical simulations reveal a new phenomenon in which single solitons disintegrate or split under white-noise perturbation but stabilize under colored-noise action. Finally, the existence of a bound state of two interacting solitons is observed in numerical simulations in media with colored-noise perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.