Abstract

Recent observations provided evidence that the solar chromosphere of sunspot regions is pervaded by Alfvénic waves—transverse magnetohydrodynamic (MHD) waves (Alfvén waves or kink waves). In order to systematically investigate the physical characteristics of Alfvénic waves over a wide range of periods, we analyzed the time series of line-of-sight velocity maps constructed from the Hα spectral data of a small sunspot region taken by the Fast Imaging Solar Spectrograph of the Goode Solar Telescope at Big Bear. We identified each Alfvénic wave packet by examining the cross-correlation of band-filtered velocity between two points that are located a little apart presumably on the same magnetic field line. As result, we detected a total of 279 wave packets in the superpenumbral region around the sunspot and obtained their statistics of period, velocity amplitude, and propagation speed. An important finding of ours is that the detected Alfvénic waves are clearly separated into two groups: 3-minute period (<7 minutes) waves and 10-minute period (>7 minutes) waves. We propose two tales on the origin of Alfvénic waves in the chromosphere; the 3-minute Alfvénic waves are excited by the upward-propagating slow waves in the chromosphere through the slow-to-Alfvénic mode conversion, and the 10-minute Alfvénic waves represent the chromospheric manifestation of the kink waves driven by convective motions in the photosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call